From tiling problems to random matrices

Tom Claeys

UCL

Université
catholique .
de Louvain \

Brussels Summer School of Mathematics

September 4, 2018



Ouvutline

Tiling problems

1. Some fun to start with

2. Large random tilings

Non-intersecting random walks and Brownian bridges

1. From hexagon tilings to non-intersecting paths

2. From non-intersecting paths to Brownian bridges

Random matrices

1. From non-intersecting Brownian bridges to random
matrix eigenvalues

2. Asymptotic properties of random matrix eigenvalues




Tiling problems

Given a two-dimensional domain and a collection of (shapes of) tiles, we try to cover the
domain with the tiles.




Tiling problems

Rules

v Allowed: translations of tiles
v Forbidden:rotations, intersections, cutting tiles,

crossing the border of the domain

Questions

v Solvability? Can the domain be covered with tiles?
v What is the number of possible tilings?

v Do different tilings share certain properties?




Tiling problems

A possible tiling




Tiling problems

A possible tiling




Tiling problems

A possible tiling




Tiling problems

A possible tiling




Tiling problems

A possible tiling




Tiling problems

A possible tiling




Tilings of a 2 X n rectangle

We speak of a domino tiling if the tiles or 1 X 2 and 2 X 1 rectangles.

First training example: tiling of a rectangle of height 2






Tilings of a 2 X n rectangle

Number of tilings

Number of tilings of a 2 X n rectangle

The Fibonacci sequence!



Checkerboard tilings

Second training example: tiling a square of size 8 X 8




Checkerboard tilings

One tiling of the checkerboard




Checkerboard tilings

And another one ...

Number of tilings of a checkerboard?

v 12988 816



Tilings of the mutilated checkerboard

Third training example: two boxes removed

Number of tilings of the mutilated checkerboard?



Tilings of the mutilated checkerboard

Third training example: two boxes removed

Number of tilings of the mutilated checkerboard?
v None!



Tilings of the mutilated checkerboard

Third training example: two boxes removed

Theorem (Gomory 1973)

If we remove a white and a black box from the checkerboard, there exists
always a tiling.




Tilings of the mutilated checkerboard

Third training example: two boxes removed

Theorem (GomMory 1973)

If we remove a white and a black box from the checkerboard, there exists
always a tiling.

v Take-home quiz: what if we remove two white and two black boxes?



The Aztecs, their pyramids and their diamonds

An Aztec pyramid




The Aztecs, their pyramids and their diamonds

Mathematical version of an Aztec pyramid




The Aztec diamond

An Aztec diamond consists of two Aztec pyramids glued together

Tileable by domino's?




The Aztec diamond

An Aztec diamond consists of two Aztec pyramids glued together

Tileable by domino’s!




The Aztec diamond

Number of tilings

.-l-l--'--'-‘-*

2 8 64 1024 32768 2097152 268 435 456

Theorem (ELkIES-KUPERBERG-LARSEN-PROPP 1992)

n(n+1)
The number of tilings of the Aztec diamond of order nis 27 2




Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 7 is
268 435 456

more than the number of possible Lotto combinations!




Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 8 is
68719476 736

ten times the number of humans on our planet!




Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 24 is

2037035976334486086268445688409378161051468393665936250636...
...140449354381299763336706183397376

more than the estimated number of particles in the universel



The reduced Aztec diamond

Antoine Doeroene

hitp=isites uvclouvain befaztecdiamond’

Number of tilings?
For each order, there is only one tiling, the horizontal onel




Tiling a hexagon with lozenges

Tiling a hexagon with lozenges of three types

U




Tiling a hexagon with lozenges

Number of tilings

2 20 980 252848 267227532

Theorem (Proctor 1988)

Explicit (but complicated) formula for the number of lozenge tilings of @
hexagon.




Tiling a hexagon with lozenges

What do you see?

cubes in a corner (3d) or lozenges in a hexagon (2d)~?




D'un pavage vers un avutre

Un FLiP est une transformation de la forme

——-—
a—

En 3d, un FLIP consiste G enlever ou rajouter un cube
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En 3d, un FLIP consiste G enlever ou rajouter un cube




D'un pavage vers un avutre

Theorem

Deux pavages par losanges d'un hexagone sont liés par une suite finie de
flips.

Démonstration

Difficile en 2d, évident en 3d - on peut reformuler I'énoncé comme suit:

"Un rangement de cubes dans un coin peut toujours étre obtenu a partir d'un
autre en rajoutant ou en enlevant des cubes”




Random tiling of the Aztec diamond

Randomness ...

Let's equip the set of tilings with a uniform probability measure, i.e. each
tiling is equally likely. Remarkably, despite the huge number of tilings, there
is an efficient algorithm to sample a random tiling.



Uniform Diamond Generator

Diamond Order 100




Frozen region

We observe with high probability a Frozen recion close to the 4 corners and a FLUID REGION in the
middle

Arctic circle theorem (JokuscH, Prorp, SHOR 1998)

A uniform random tiling of a large Aztec diamond is very likely to have a
frozen region and a fluid region, which are separated by a curve which is
approximately the circle inscribed in the diamond.




Random lozenge tiling of a hexagon

Same phenomenon is observed for lozenge tilings of a hexagon




Hexagon Generator

First side size
Second side size
Third side size

15

15

15




Rectangle Generator

Width
Height

40

30




Aztec House Generator

Aztec n
Aztec h

30

30




Aztec Ring Generator

Inner order

Quter order

20

40




Questions

Some natural questions:

Macroscopic behavior

For which domains does one observe an arctic phenomenon, and what is
the form of the arctic curve?

Microscopic behavior

How can one describe fluctuations around the border?

Universality

To what extent are the phenomena similar for different domains?




Tilings and random walks

Let us manipulate the following hexagon tiling a bit ...
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Tilings and random walks

Let us manipulate the following hexagon tiling a bit ...

We see a configuration of up-down paths. At each step a path can go one unit up or down. For
each such configuration of non-intersecting paths, we can recover a hexagon tiling.




Tilings and random walks

Bijection

There is a bijection between lozenge tilings of a hexagon and
configurations of non-intersecting up-down paths.

Hexagon tiling vs random walks

A uniform random lozenge tilings of a hexagon can be interpreted as a
uniform random configuration of non-intersecting random walks.




From a random walk to Brownian motion

1d Brownian motion

Random function X : [0,T] — R characterized by the properties

1.X(0)=0

2. X is almost surely continuous

3.forall0 <ty <ty <...<tpn, increments X(t1) — X(to).
X(t2) — X(t1), .. X(tm) — X(tm—1) are independent

4. X(t1) — X(to) ~ N(0,t1 —to)

Heuristics

Can be seen as a continuous version of a random walk
Has the Markov property: the future depends on the present but not on the
past



Brownian motion and Brownian bridge
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Brownian bridge

1d Brownian bridge

A Brownian bridge is a Brownian motion conditioned to start at t = 0 and
end at t = 1 at the same point. It can be realized as

Y(t) = X(t) — tX(1)

Non-intersecting Brownian bridges

The natural continuous analogue of a hexagon tiling is now a collection of
non-intersecting Brownian bridges.




Non-intersecting Brownian bridges

(5 T T

120




Non-intersecting Brownian bridges

Joint probability distribution

A classical result of KarLin-McGRrecor (1959) gives, among others, the joint
probability density function of the positions x1,...,Z, of the bridges at @
fixed time t € (0,1):

n
o n

1 2
H 2 z3
- (m] — wk) e 2t(1-t) 7 dxj

N 1<j<k<n j=1




Non-intersecting Brownian bridges

Qualitative interpretation

Two counteracting features:

v Confining: the positions x1,...,x, are unlikely to be
large because of the Gaussian factors in the density
v Repulsion: the positions x1,...,x, repel each other

because of the Vandermonde determinant



Random matrices

Random Wigner matrix

A random matrix is a matrix filled with random variables. If the matrix
entries are independent and identically distributed (possibly up to some
symmetry constraints), we speak of a WIGNER matrix.

Applications of random matrices

Various aread’s in physics, wireless communication, statistics, numerical
analysis, number theory, modeling of social and political networks ...




Random matrices

Asymptotics of eigenvalues

A fundamental question in random matrix theory is to understand the
behavior of the eigenvalues of a random matrix as the dimension n tends
to infinity?

v Limiting density of eigenvalues?
v Correlations between eigenvalues

v Extreme eigenvalues?



Random matrices

The GUE

with

The Gaussian Unitary Ensemble consists of n X n Hermitian matrices with
independent Gaussian entries: a GUE matrix H is of the form H =M+ M*

M;; = N(0,0%) +iN(0,0%)

For studying large m asymptotics, it is convenient to set o0 =

1

Vo




GUE eigenvalues

Eigenvalues of a 100 x 100 GUE matrix

Distribution of GUE eigenvalues

1 H (z; — zx)* ﬁe_%‘”?dxj

N 1<j<k<n j=1



GUE eigenvalues

Comparison with independent random variables and equi-spaced points




GUE eigenvalues

Histogram of eigenvalues of a 500 x 500 GUE matrix

WIGNER's semi-circle law

The counting measure of the eigenvalues converges almost surely to a
probability measure with semi-circle density as N — o0.



GUE eigenvalues

Correlation functions

The m-point correlation functions can be expressed in a remarkably
simple way:

Rm(xla e axm) = det (Kn(xlawj))

1,j=1,...,m?

for some function K,(x,y) which is called the correlation kernel

Determinantal point processes

A point process whose correlation functions have such a determinantal
structure is called determinantal point process. Over the last decades, an
impressive toolbox has been developed to study asymptotics for
determinantal point processes.



GUE eigenvalues

Correlation kernel

The correlation kernel is given by
2,2 nd
K, (z,y) = e 2@+ ij(w)pj(y),
=0

where pj is the degree 7 Hermite polynomial characterized by the
orthogonality conditions

/ pj(x)pr(z)e 2 dz = by,
R




GUE eigenvalues

Christoffel-Darboux formula

The Christoffel-Darboux formula allows to evaluate the sum explicitly as

Kn—1 - z (z2+y?2) Pn (le)pn_1 (y) — Dn (y)pn—l (CL‘)
Kn L—Y

K,(z,y) =

Y

where K; is the leading coefficient of p;




GUE eigenvalues

Large n asymptotics

Understanding the asymptotic behavior of the Hermite polynomials allows
us to understand the asymptotic behavior of the GUE eigenvalues.

v/ Scaling limits of the correlation kernel lead to universal
limiting kernels like the sine and Airy kernel
v Gap probabilities can be expressed as Hankel

determinants



Related models

Unitary Invariant Ensembles

Random matrix ensembles with eigenvalue distribution

= H (z; — z1,)? ﬁe‘"v(“’f)dwj

N 1<j<k<n j=1

v Are also determinantal point processes

v Correlation functions built out of orthogonal
—nV

polynomials with respect to weight e




Related models

Beta Ensembles

Eigenvalue distribution

Zi H z; — zp|” He V(i) dg

N 1<j<k<n

v B=1/T is a measure for repulsion

v Not determinantal in general, much harder to analyze,

approach using stochastic operators




Questions

Problems in random matrix theory

Questions that have been investigated in the last 10 years or which are still
to be investigated in various ensembles

v Extreme value distributions: what is the limit
distribution of the largest eigenvalue of a random
matrix?

v Gap probabilities: what is the probability that there
are no eigenvalues in a given set?

v/ Rigidity: how far does an eigenvalue lie from its
expected position?

v/ Behavior of eigenvectors?
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Some links:

v Generating random tilings online - by Antoine Doeraene
https:/sites.uclouvain.be/aztecdiamond/

v Wikipedia
http:/en.wikipedia.org/wiki/Domino_tiling

v/ The mutilated checkerboard
http:/en.wikipedia.org/wiki/Mutilated_chessboard_problem

v http:///www.claymath.org/libraru/senior_scholars/ stanley_ardila_tilings.pdf
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