From tiling problems to random matrices

Tom Claeys

Brussels Summer School of Mathematics

September 4, 2018

Outline

Tiling problems

- 1. Some fun to start with
- 2. Large random tilings

Non-intersecting random walks and Brownian bridges

- 1. From hexagon tilings to non-intersecting paths
- 2. From non-intersecting paths to Brownian bridges

Random matrices

- 1. From non-intersecting Brownian bridges to random matrix eigenvalues
- 2. Asymptotic properties of random matrix eigenvalues

Given a two-dimensional domain and a collection of (shapes of) tiles, we try to cover the domain with the tiles.

Rules

- √ Allowed: translations of tiles
- ✓ Forbidden: rotations, intersections, cutting tiles, crossing the border of the domain

Questions

- ✓ **Solvability?** Can the domain be covered with tiles?
- ✓ What is the **number of possible tilings**?
- ✓ Do different tilings share certain properties?

Tilings of a $2 \times n$ rectangle

We speak of a **domino tiling** if the tiles or 1 imes 2 and 2 imes 1 rectangles.

First training example: tiling of a rectangle of height $oldsymbol{2}$

Tilings of a $2 \times n$ rectangle

Number of tilings

Number of tilings of a $2 \times n$ rectangle

The Fibonacci sequence!

Checkerboard tilings

Second training example: tiling a square of size 8×8

Checkerboard tilings

One tiling of the checkerboard

Checkerboard tilings

And another one ...

Number of tilings of a checkerboard?

✓ 12 988 816

Third training example: two boxes removed

Number of tilings of the mutilated checkerboard?

Third training example: two boxes removed

Number of tilings of the mutilated checkerboard?

√ None!

Third training example: two boxes removed

Theorem (Gomory 1973)

If we remove a white and a black box from the checkerboard, there exists always a tiling.

Third training example: two boxes removed

Theorem (Gomory 1973)

If we remove a white and a black box from the checkerboard, there exists always a tiling.

✓ **Take-home quiz:** what if we remove two white and two black boxes?

The Aztecs, their pyramids and their diamonds

An Aztec pyramid

The Aztecs, their pyramids and their diamonds

Mathematical version of an Aztec pyramid

The Aztec diamond

An Aztec diamond consists of two Aztec pyramids glued together

Tileable by domino's?

The Aztec diamond

An Aztec diamond consists of two Aztec pyramids glued together

Tileable by domino's!

The Aztec diamond

Number of tilings

Theorem (Elkies-Kuperberg-Larsen-Propp 1992)

The number of tilings of the Aztec diamond of order n is $2^{rac{n(n+1)}{2}}$

Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 7 is

 $268\,435\,456$

more than the number of possible Lotto combinations!

Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 8 is

 $68\,719\,476\,736$

ten times the number of humans on our planet!

Number of tilings of the Aztec diamond

Some numbers

The number of tilings of the Aztec diamond of order 24 is

 $2037035976334486086268445688409378161051468393665936250636...\\ 1.140449354381299763336706183397376$

more than the estimated number of particles in the universe!

The reduced Aztec diamond

Number of tilings?
For each order, there is only one tiling, the horizontal one!

Tiling a hexagon with lozenges

Tiling a hexagon with lozenges of three types

Tiling a hexagon with lozenges

Number of tilings

Theorem (Proctor 1988)

Explicit (but complicated) formula for the number of lozenge tilings of a hexagon.

Tiling a hexagon with lozenges

What do you see?

cubes in a corner (3d) or lozenges in a hexagon (2d)?

D'un pavage vers un autre

Un FLIP est une transformation de la forme

En 3d, un flip consiste à **enlever ou rajouter un cube**

D'un pavage vers un autre

Un FLIP est une transformation de la forme

En 3d, un flip consiste à **enlever ou rajouter un cube**

D'un pavage vers un autre

Theorem

Deux pavages par losanges d'un hexagone sont liés par une suite finie de flips.

Démonstration

Difficile en 2d, évident en 3d - on peut reformuler l'énoncé comme suit:

"Un rangement de cubes dans un coin peut toujours être obtenu à partir d'un autre en rajoutant ou en enlevant des cubes"

Random tiling of the Aztec diamond

Randomness ...

Let's equip the set of tilings with a **uniform probability measure**, i.e. each tiling is equally likely. Remarkably, despite the huge number of tilings, there is an **efficient algorithm to sample** a random tiling.

Uniform Diamond Generator

Diamond Order

Frozen region

We observe with high probability a frozen region close to the 4 corners and a fluid region in the middle

Arctic circle theorem (Jokusch, Propp, Shor 1998)

A uniform random tiling of a large Aztec diamond is very likely to have a frozen region and a fluid region, which are separated by a curve which is approximately the circle inscribed in the diamond.

Random lozenge tiling of a hexagon

Same phenomenon is observed for lozenge tilings of a hexagon

Hexagon Generator

First side size
Second side size
Third side size

15 15 15

Rectangle Generator

Width Height

30

Aztec House Generator

Aztec n

Aztec h

30

30

Aztec Ring Generator

Inner order

Outer order

20	
40	

Questions

Some natural questions:

Macroscopic behavior

For which domains does one observe an arctic phenomenon, and what is the form of the arctic curve?

Microscopic behavior

How can one describe fluctuations around the border?

Universality

To what extent are the phenomena similar for different domains?

Let us manipulate the following hexagon tiling a bit ...

Let us manipulate the following hexagon tiling a bit ...

Let us manipulate the following hexagon tiling a bit ...

Let us manipulate the following hexagon tiling a bit ...

We see a configuration of up-down paths. At each step a path can go one unit up or down. For each such configuration of non-intersecting paths, we can recover a hexagon tiling.

Bijection

There is a bijection between lozenge tilings of a hexagon and configurations of non-intersecting up-down paths.

Hexagon tiling vs random walks

A uniform random lozenge tilings of a hexagon can be interpreted as a uniform random configuration of **non-intersecting random walks**.

From a random walk to Brownian motion

1d Brownian motion

Random function $X:[0,T] o\mathbb{R}$ characterized by the properties

- 1. X(0) = 0
- 2. X is almost surely continuous
- 3. for all $0 < t_0 < t_1 < \ldots < t_m$, increments $X(t_1) X(t_0)$,

$$X(t_2)-X(t_1)$$
, ..., $X(t_m)-X(t_{m-1})$ are independent

4.
$$X(t_1) - X(t_0) \sim \mathcal{N}(0, t_1 - t_0)$$

Heuristics

Can be seen as a continuous version of a random walk

Has the **Markov property**: the future depends on the present but not on the past

Brownian motion and Brownian bridge

Brownian bridge

1d Brownian bridge

A **Brownian bridge** is a Brownian motion conditioned to start at t=0 and end at t=1 at the same point. It can be realized as

$$Y(t) = X(t) - tX(1)$$

Non-intersecting Brownian bridges

The natural continuous analogue of a hexagon tiling is now a collection of **non-intersecting Brownian bridges**.

Non-intersecting Brownian bridges

Non-intersecting Brownian bridges

Joint probability distribution

A classical result of Karlin-McGregor (1959) gives, among others, the joint probability density function of the positions x_1,\dots,x_n of the bridges at a fixed time $t\in(0,1)$:

$$rac{1}{Z_n} \prod_{1 \leq j < k \leq n} (x_j - x_k)^2 \ \prod_{j=1}^n e^{-rac{n}{2t(1-t)}x_j^2} dx_j$$

Non-intersecting Brownian bridges

Qualitative interpretation

Two counteracting features:

- ✓ **Confining:** the positions x_1, \ldots, x_n are unlikely to be large because of the Gaussian factors in the density
- ✓ **Repulsion:** the positions x_1, \ldots, x_n repel each other because of the Vandermonde determinant

Random matrices

Random Wigner matrix

A random matrix is a **matrix filled with random variables**. If the matrix entries are independent and identically distributed (possibly up to some symmetry constraints), we speak of a Wigner matrix.

Applications of random matrices

Various area's in physics, wireless communication, statistics, numerical analysis, number theory, modeling of social and political networks ...

Random matrices

Asymptotics of eigenvalues

A fundamental question in random matrix theory is to $understand\ the$ behavior of the eigenvalues of a random matrix as the dimension n tends to infinity?

- ✓ Limiting density of eigenvalues?
- ✓ Correlations between eigenvalues
- ✓ Extreme eigenvalues?

Random matrices

The GUE

The **Gaussian Unitary Ensemble** consists of $n \times n$ Hermitian matrices with independent Gaussian entries: a GUE matrix H is of the form $H=M+M^*$ with

$$M_{i,j} = \mathcal{N}(0,\sigma^2) + i \mathcal{N}(0,\sigma^2)$$

For studying large n asymptotics, it is convenient to set $\sigma=\frac{1}{\sqrt{n}}$.

Eigenvalues of a 100×100 GUE matrix

Distribution of GUE eigenvalues

$$rac{1}{Z_n} \prod_{1 \leq j < k \leq n} (x_j - x_k)^2 \ \prod_{j=1}^n e^{-rac{n}{2}x_j^2} dx_j$$

Comparison with independent random variables and equi-spaced points

Histogram of eigenvalues of a 500×500 GUE matrix

Wigner's semi-circle law

The counting measure of the eigenvalues converges almost surely to a probability measure with semi-circle density as $N \to \infty$.

Correlation functions

The m-point correlation functions can be expressed in a remarkably simple way:

$$R_m(x_1,\ldots,x_m) = \det\left(K_n(x_i,x_j)
ight)_{i,j=1,\ldots,m},$$

for some function $K_n(x,y)$ which is called the **correlation kernel**

Determinantal point processes

A point process whose correlation functions have such a determinantal structure is called **determinantal point process**. Over the last decades, an impressive toolbox has been developed to study asymptotics for determinantal point processes.

Correlation kernel

The correlation kernel is given by

$$K_n(x,y) = e^{-rac{n}{2}(x^2+y^2)} \sum_{j=0}^{n-1} p_j(x) p_j(y),$$

where p_j is the degree j Hermite polynomial characterized by the orthogonality conditions

$$\int_{\mathbb{R}}p_{j}(x)p_{k}(x)e^{-rac{n}{2}x^{2}}dx=\delta_{jk}.$$

Christoffel-Darboux formula

The Christoffel-Darboux formula allows to evaluate the sum explicitly as

$$K_n(x,y) = rac{\kappa_{n-1}}{\kappa_n} e^{-rac{n}{2}(x^2+y^2)} rac{p_n(x)p_{n-1}(y) - p_n(y)p_{n-1}(x)}{x-y},$$

where κ_j is the leading coefficient of p_j

Large n asymptotics

Understanding the **asymptotic behavior of the Hermite polynomials** allows us to understand the asymptotic behavior of the GUE eigenvalues.

- ✓ Scaling limits of the correlation kernel lead to **universal limiting kernels** like the sine and Airy kernel
- ✓ Gap probabilities can be expressed as Hankel determinants

Related models

Unitary Invariant Ensembles

Random matrix ensembles with eigenvalue distribution

$$rac{1}{Z_n} \prod_{1 \leq j < k \leq n} (x_j - x_k)^2 \ \prod_{j=1}^n e^{-nV(x_j)} dx_j$$

- ✓ Are also determinantal point processes
- \checkmark Correlation functions built out of orthogonal polynomials with respect to weight e^{-nV}

Related models

Beta Ensembles

Eigenvalue distribution

$$rac{1}{Z_n}\prod_{1\leq j< k\leq n}\left|x_j-x_k
ight|^{eta}\;\prod_{j=1}^ne^{-nV(x_j)}dx_j$$

- \checkmark $\beta=1/T$ is a measure for repulsion
- ✓ Not determinantal in general, much harder to analyze, approach using stochastic operators

Questions

Problems in random matrix theory

Questions that have been investigated in the last 10 years or which are still to be investigated in various ensembles

- ✓ Extreme value distributions: what is the limit distribution of the largest eigenvalue of a random matrix?
- √ Gap probabilities: what is the probability that there
 are no eigenvalues in a given set?
- ✓ Rigidity: how far does an eigenvalue lie from its expected position?
- ✓ Behavior of eigenvectors?

References

Some links:

✓ Generating random tilings online - by Antoine Doeraene

https://sites.uclouvain.be/aztecdiamond/

√ Wikipedia

http://en.wikipedia.org/wiki/Domino_tiling

√ The mutilated checkerboard

http://en.wikipedia.org/wiki/Mutilated_chessboard_problem

√ http://www.claymath.org/library/senior_scholars/ stanley_ardila_tilings.pdf

Не