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Principal component analysis
Introduction to Functional Data Analysis
(Static) Functional PCA
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Examples
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Statistics

"I can prove anything by statistics except the truth.” - George Canning
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Statistics
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Statistics

F=ma+e¢
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Statistics

Explaining the variance is one of the main concerns.

T ) FPCA 6 /39



Multivariate statistics

SWEET
RECOMMENDER
SYSTEM

Contribute to scientific
project and find out which
sweets you like.

About the project
Review
Recommendations!

Add sweats

FAQ

Choose language
English Polski

wERS),
SRSy,
S

TR
sz

github

)

cookie, i
oh cookie cooki

good enough for me,
okie starts with C.”
Cookie monster

Hello,

which is the recommender system.

Contribute to scientific
project - all I need is your 5 minutes

on this e 1 ask for your ratings of popular Then my
which sweets you would prefer from th ch you don't know

START

2 easy steps to help me:

Rate sweets

try to provide ratings for as much sweets as you can. If you haven't eaten given sweet
then mark it that way because this information is also importan.

Enjoy recommends

find out which new sweets you'd like. Enjoy them or not and give me feedback
afterwards 1)

What do I need?

In order to build reliab
500 users and abou

I need at least
0000 marks. But of course the more the bettar!

‘THIS GOAL WAS ACHIEVED SUCCESSFULLY! THANKS! The next step for even better
recommendations and the dataset itself is 1000 sers and 50000 marks

So far...

1798 / 1000 users contributed

42070 / 50000 ratings provided

Sweets Recommender System
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Ratings of some sweets. Users in rows and sweets in columns.
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Principal Component Analysis

Let X € RY zero-mean random vector

Let (A, &) eigenvalues and eigenvectors of C = Var(X), in non-increasing
order of \;.

We define m-th princtipal component
Ym=X'en.

We have
Var( Y) = diag(/\l, )\27 .. )

Moreover, (&;) form an orthonormal basis and thus

d
X = Z Ymem.
m=1

Classical solution found by Pearson (1901) and Hotelling (1933).
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Time series

EPC%R Water Consumption in Edmonton During Olympic Gold Medal Hockey Game
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Functional data analysis

Velocity (cmiyr)

Age

Berkeley Growth Data: Heights of 20 girls taken from ages 0 through
18 (left). Growth process easier to visualize in terms of speed of growth (right).

Tuddenham and Snyder (1954) and Ramsey and Silverman (1997)
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Meters

Meters/sec?

Millivolts

Milliseconds

Lower lip movement (top), acceleration (middle) and EMG of a facial
muscle (bottom) of a speaker pronouncing the syllable “bob” for 32 replications.
Malfait, Ramsay, and Froda (2001)
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Minicircles
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Projections of DNA minicircles on the planes given by the principal
axes of inertia (three panels on the left side: TATA curves, right: CAP curves).
Mean curves are plotted in white. Panaretos, Kraus and Maddocks (2011)
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Horizontal component of the magnetic field measured in one minute
resolution at Honolulu magnetic observatory from 1/1/2001 00:00 UT to
1/7/2001 24:00 UT. 1440 measurements per day. Gabrys and Kokoszka (2007)
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Functional data representation

A (theoretical) problem in FDA is the dimensionality of the model.
Functions are intrinsically infinite dimensional.
How can we store functional data?

We can consider a function as an infinite vector of coefficient in an

orthonormal basis.

First 5 Fourier basis functions

T ) FPCA 15 / 39



A function with following Fourier coefficients:
-0.45, 0.55, 0.051, -0.45, 0.12, -0.07, -0.06, 0.13, -0.14, 0.04, 0.00, ...

VTV

Projections on the space spanned by 1,2,3,4,5 basis functions
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Dimension reduction

Techniques for dimension reduction are even more important than in
multivariate statistics.

Functional principal component analysis (FPCA) is considered as a key
techniques in FDA.

The idea is to find the "optimal” basis. As a measure we take the L,
distance from projection:

2
<E

p

X — Z(X,e,-)e,-

i=1

p

X =) (X, b)b;

i=1

E

)

for any ONB (b;).
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Example H = ([0, 1])

We need a notion of mean and variance. This can be easily establish for
random variables in Hilbert space.

The mean is given by (EX)(t) = E(X(t)) for t € [0,1]

The covariance operator is given by
1
CXO) = [ CorlX(e). X(s)y(5)es
(just a continous extension of (Cv)x = 3%, Cov(Xk, X/)v;.)

C is a symmetric, non-negative definite, Hilbert-Schmidt operator = we
can find it's eigenfunctions.
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Suppose for the rest of the presentation that {X;} is zero mean and
weakly stationary taking values in H = L.

Let Ay > A2 > ... (assumption) be the eigenvalues of C and let e;, ey, ...
be the eigenfunctions (standardized to unit length).

The functional principal components are defined as
Ym = (X, em).

We have
Var(Y) = diag(A1, A2, .. .).

Karhunen-Loeve expansion: In a separable Hilbert space (e;) form an ONB
and thus
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0.041
— 0.235
0.124

3-term K-L-expansion

Imagine you want to measure the intraday variation of the magnetic
field in your garden but you can send only 3 real numbers per day.
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Sqrt(PM10)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Intraday time

We display /x¢(u), 1 < t < 175, where x;(u) are daily functional
observations of PM10 represented with 15 Fourier basis functions. The solid black
line represents the sample mean curve.
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Eigenfunctions
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The eigenfunctions e; (black), e, (red) and es (green) belonging to
the three largest eigenvalues of the corresponding covariance operator. First 3
principal components explain 84% of variability.
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Original observation
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Horizontal component of the magnetic field measured in one minute
resolution at Honolulu magnetic observatory from 1/1/2001 00:00 UT to
1/7/2001 24:00 UT. 1440 measurements per day. Gabrys and Kokoszka (2007)
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Dynamic FPCA: Motivation

Let Y1 = (Y117 ceey Ypl)/-

Q We ignore valueable information hidden in the serial dependence of
the data.

= more efficient compression may be possible.

Q Though
Var( Yl) = diag()\l, )\2, ey )\p),

we have (unlike in the iid case)
Cov(Y1, Y») non-diagonal (in general).

— needs to be studied as a multivariate series.
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Dynamic FPCA: Motivation

Instead of
Ymt - <Xta em>
we consider filter (¢mk)men kez and the convolution
Yot = D _(Xe—ie, Gk
lez
We claim that there exists (¢mk)men kez S-t.
For k 2 m, and any s,t € Z
Cov(Yis, Ymt) =0,
Reconstructed

)N<t = Z Z Ymt¢mt

m=1tcZ
has the L, smaller than FPCA.

We propose a construction of such a filter (¢mk)men kez-
T ) FPCA 26 / 39



Dynamic FPCA

Rather than only using
N0 = [ Contxa(0). Xo(s)r(s)es

in the derivation functional PCs we want to use (Cy: h € Z) where
G0 = [ Conx(), Xo(s Dy s)s

This leads to the concept of
| SPECTRAL DENSITY OPERATORS]

X =3 G,
h

Converges if Y, ||Chlls < co. (Key assumption.)

Brillinger (1975) for multivariate data. Now, in the functional context,
Panaretos and Tavakoli (2013), Hérmann, Kidziriski and Hallin (2013).
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Dynamic FPCA

Definition (Dynamic functional principal components)

Assume that (X;: t € Z) is a mean zero, stationary process with values in
L?([0,1]) and summable cross-covariances. Then the m-th dynamic
functional principal component (DFPC) score of X; is defined by

Yoot = ) (Xe—t, bme), tE€Z, m>1. (1)
LeZ

We call &, := (¢pme: £ € Z) the m-th DFPC filter.
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We have proven that

Yt is real-valued

If there is no temporal dependence (Cp) our method coincide with
PCA

For m # m’, the principal components Yy,: and Y,,s are uncorrelated
for all s, t.

Ymt is optimal in the sense that
P P
EIXe = > Xmel* < ENIXe = > Kime|*.
m=1 m=1

for any different p-dimensional filter (¢ ,)1<m<p.
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Implementation (in a nutshell)

(I) Transform discrete data into functions by basis functions approach:

X X(t) = Zyva(t) + ... + Zgvy(t) = V'(t)Z.

(1) We are working on finite dimensional space now. Operators have a
corresponding matrix. This matrix acts on the coefficients of the curves.

For example

BX — <Z ChZe—ﬂhG) vV

heZ
when V= ((v;,vj): 1 <i,j < d).
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Implementation (in a nutshell)

(1) Eigenfunctions/values of [\ correspond to eigenvectors/values of
BX: om(0) = V(). Then

V/ ™

Omk = > gom(s)e*ﬂksds =V,

and

Ymt = Z/ Z, v(u )¢mkdu—zzr k VP mk-

keZ keZ

(IV) All involved quantities need to be estimated (consistency results have
been established).

(V) Numerical integration is used.
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Real data example

1st score sequences

o 50 100 150

days

The sequence of the first static FPC scores (red) [73%] and the
dynamic ones (black) [80%)].
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Real data example
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First static FPC (left) and filters corresponding to first dynamic
FPC. The filters ¢1¢(u), t > 1, are dashed and for i < 0 solid. The larger ||, the
lighter the curve.
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Real data example

Sanemioy

Inyine Iy Aty e

We show 10 subsequent observations (left panel), the corresponding
static KL expansion with one component (middle panel) and the dynamic KL
expansion with one component (right panel).
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Conclusion

Nature is a Hilbert space!

One can analyse a time series of anything
Dynamic PCA in the time series context:

explains more variance,
gives uncorrelated processes.
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Thank you for your attention
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Dynamic FPCA

One can show that applying the functional filter ® = (¢«) to (X¢),

Xe—= Y= Z Pr(Xe—k),

keZ

with ¢x(x) = ({x, 1), ..., (X, Ppk))’, results in spectral density matrix

(T3 (61(0)),¢1(0)) -~ (M5 (¢5(0)), 61(0))

rg/: : - :

. . . )

(F5(01(0)),95(0)) -+ (TF(25(0)), ¢5(0))
where ¢71.(0) == > 1cz Akl

If ¢7,(0) are eigenfunctions of rg<, then cross spectra are zero.
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Dynamic FPCA

Let (Am(0), om(f)) be m-th eigenvalue and eigenvector of spectral density
F§<. We choose ¢, € H such that

1 »
Qbmk = 27_[_/7T @m(e)e kgdé.

Remarks

@ We can show that I'g is

symmetric
non-negative
Hilbert Schmidt

= Spectral decomposition of Fg is possible.

Q We see that ¢,k are Fourier-coefficients ¢ ,(0).

T ) FPCA
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http://sweetrs.org/
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