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quasi- (comb. form)
seemingly; apparently but not really
EXAMPLE quasi-American | quasi-scientific
ORIGIN from Latin quasi ‘as if, almost.’
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GEOMETRICAL INTUITION
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QUESTION Which of the two patterns is non-random 
and contains correlations among points?



GEOMETRICAL INTUITION
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QUESTION If you scatter black grains on a white plate, 
how will look the distribution of grains?



GEOMETRICAL INTUITION

5

Quasi-randomRandom (no correlation)

More evenly 
distributed points

Clusters of points 
emerge randomly



VOCABULARY
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INVERSION METHODS • THE HILBERT 
SPACE FILLING CURVE...
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COMPUTER RENDERING

8

Image-based lighting, 64 quasi-random samples per pixel



MONTE CARLO INTEGRAL
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MONTE CARLO INTEGRAL
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2D function
defined on D = [0,1)x [0,1) Is analytical integration always possible?

I =

ZZ

D

f (x, y) dx dy

⇡ 1

N

NX

i=1

f (xi, yi) = ÎN

with (xi, yi) 2 D 8i 2 [1..N ]



MONTE CARLO INTEGRAL
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2D function
defined on D = [0,1)x [0,1) Approximation with a discrete sum

I =

ZZ

D

f (x, y) dx dy

⇡ 1

N

NX

i=1

f (xi, yi) = ÎN

with (xi, yi) 2 D 8i 2 [1..N ]



MONTE CARLO INTEGRAL
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2D function
defined on D = [0,1)x [0,1)

QUESTION What is the expected mean integration 
error when the N point samples are chosen at random?

Approximation with a discrete sum

I =

ZZ

D

f (x, y) dx dy

⇡ 1

N

NX

i=1

f (xi, yi) = ÎN

with (xi, yi) 2 D 8i 2 [1..N ]



RATE OF CONVERGENCE
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RATE OF CONVERGENCE
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Assume a constant mean 
squared error (MSE) that is 
averaged over all N samples. 



RATE OF CONVERGENCE
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�

2 = V ar (f) =

ZZ

D

[f (x, y)� I]2 dx dy
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�
=

�

2

N

QUESTION Is this a “fast” rate of convergence?

Assume a constant mean 
squared error (MSE) that is 
averaged over all N samples. 

Result: The squared error between the true integral and the Monte 
Carlo approximation decreases linearly with the number of samples.



BERNOULLI TRIALS

We want to approximate the mean value by flipping 
coins and counting 0 for heads (H) and 100 for tails

QUESTION How many times to you need to flip the 
coin to approach the mean value 50 with 1% error?
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BERNOULLI TRIALS
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One flip
Mean:

0 or 100

Average error:

(50 + 50) / 2

= 50

Binomial probabiliMes: illustraMon 



BERNOULLI TRIALS
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Two flips
Mean:

0, 50(x2) or 100

Average error:

(50 + 0(x2) + 50) / 22

= 25



BERNOULLI TRIALS
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Three flips
Mean:

0, 33.3(x3), 66.6(x3) or 
100

Average error:

(50 + 16.6(x6) + 50) / 23

= 25



BERNOULLI TRIALS
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Three flips
Mean:

0, 33.3(x3), 66.6(x3) or 
100

Average error:

(50 + 16.6(x6) + 50) / 23

= 25
Flipping 3 instead of 2 
coins, does not improve 
the average error!



BERNOULLI TRIALS
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Four flips
Mean:

0, 25(x4), 50(x6), 75(x4) or 
100

Average error:

(50(x2) + 25(x8)) / 24

= 18.75



BERNOULLI TRIALS
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Five flips
Mean:

0, 20(x5), 40(x10), 60(x10), 
80(x5) or 100

Average error:

(50(x2) + 30(x10) + 
10(x20)) / 25

= 18.75
Flipping 5 instead of 4 
coins, does not improve 
the average error!



BERNOULLI TRIALS
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Six flips
Mean:

0, 16.6(x6), 33.3(x15), 
50(x20), 66.6(x15), 
83.3(x6) or 100

Average error:

(50(x2) + 33.3(x12) + 
16.6(x30)) / 26

= 15.625



BERNOULLI TRIALS
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Seven flips
Mean:

0, 14.3(x7), 28.6(x21), 
42.6(x35), 57.1(x35), 
71.4(x21), 85.7(x7) or 100

Average error:

(50(x2) + 85.7(x14) + 
71.4(x42) + 14.3(x70)) / 27

= 15.625



BERNOULLI TRIALS
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Eight flips
Mean:

0, 12.5(x8), 25(x28), 
37.5(x56), 50(x70), 62.5(x56), 
75(x28), 87.5(x8) or 100

Average error:

(50(x2) + 37.5(x16) + 
25(x56) + 12.5(x112) + 
0(x70)) / 28

= 13.671875



BERNOULLI TRIALS
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Hundred flips
Mean:

...

Average error:

...

= 3.979462



AVERAGE ERROR
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QUESTION How many times to you need to flip the 
coin to approach the mean value 50 with 1% error?

1 flip: avg. error = 50

2 flips: avg. error = 25 = 50 - 50 / 2

4 flips: avg. error =18.75 = 25 - 25 / 4

6 flips: avg. error =15.625 = 18.75 - 18.75 / 6

8 flips: avg. error =13.671875 = 15.625 - 15.625 / 8

1592 flips: avg. error = 0.9997015 = 1.00033 - 1.00033 / 1592Observation: The relative error improvement is inversely 
proportional to the number of sample drawn so far.



AVERAGE ERROR
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QUESTION How many times to you need to flip the 
coin to approach the mean value 50 with 1% error?

1 flip: avg. error = 50

2 flips: avg. error = 25 = 50 - 50 / 2

4 flips: avg. error =18.75 = 25 - 25 / 4

6 flips: avg. error =15.625 = 18.75 - 18.75 / 6

8 flips: avg. error =13.671875 = 15.625 - 15.625 / 8

1592 flips: avg. error = 0.9997015 = 1.00033 - 1.00033 / 1592



LAW OF LARGE NUMBERS

As the number of independent randomly generated trials 
increases, their average tends to their theoretical mean.
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LAW OF LARGE NUMBERS

As the number of independent randomly generated trials 
increases, their average tends to their theoretical mean.
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LAW OF LARGE NUMBERS

As the number of independent randomly generated trials 
increases, their average tends to their theoretical mean.
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Consequence: If it is possible to improve the convergence rate, 
then there is only one way: Do not pick point samples at random!



QUASI-RANDOM POINTS
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QUASI-RANDOM POINTS
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Halton sequence Hammersley set

Blue noise points Lattice rule Cartesian grid

Random



RANDOM SAMPLING
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1000 random points64 random points



RANDOM SAMPLING
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1000 random points64 random points

Clumping: There are regions of the integration 
domain that are sparsely sampled while other 
regions are densely covered by clusters of points.



REGULAR GRIDS
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Cartesian grid, 162 = 256 pointsCartesian grid, 82 = 64 points



REGULAR GRIDS
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Cartesian grid, 162 = 256 pointsCartesian grid, 82 = 64 points

Curse of dimensionality: In higher dimensions, 
the granularity is much coarser and it becomes 
very difficult to control the number of samples.



CONCAVITY -VEXITY BIAS
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24 points inside a convex function26 points inside a concave function



CONCAVITY -VEXITY BIAS

We want to integrate the area of a half unit disc 
(area: Pi/2) enclosed in a unit box (area: 22 = 4)

- Note that the ratio these two is (Pi/2)/4 = Pi/8

- When approximating the integral with 82 = 64 
samples, the proportion of samples inside the shapes 
should be close to 64 x Pi/8 = 25.132 (not 24 or 26)
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CONCAVITY -VEXITY BIAS
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Bias: When using regular grids, the integral is systematically 
over or under estimated for globally concave or convex 
functions, respectively (Dupire & Savine,1998)

We want to integrate the area of a half unit disc 
(area: Pi/2) enclosed in a unit box (area: 22 = 4)

- Note that the ratio these two is (Pi/2)/4 = Pi/8

- When approximating the integral with 82 = 64 
samples, the proportion of samples inside the shapes 
should be close to 64 x Pi/8 = 25.132 (not 24 or 26)



STRATIFIED SAMPLES
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Stratified samples and strata , 64 pointsRandom samples, 64 points



STRATIFIED SAMPLES
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Stratified samples, 64 pointsRandom samples, 64 points



PSEUDO-RANDOM
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unsigned int state[624];
unsigned int index;

unsigned int twist(const unsigned int u, const unsigned int v) {
    const unsigned int twisted = ((u & 0x80000000) | (v & 0x7FFFFFFF)) >> 1;
    if(v & 1) return twisted ^ 2567483615ul;
    return twisted;
}

void update() {
! index = 0;
! for(unsigned int i = 0; i < 624 - 397; ++i)
! ! state[i] = state[i + 397] ^ twist(state[i], state[i + 1]);

! for(unsigned int i = 624 - 397; i < 623; ++i)
! ! state[i] = state[i + 397 - 624] ^ twist(state[i], state[i + 1]);

! state[623] = state[396] ^ twist(state[623], state[0]);
}

unsigned int random() {
! if(index == 624) update();
! unsigned int r = state[index++];
! r ^= (r >> 11);
! r ^= (r << 7) & 2636928640ul;
! r ^= (r << 15) & 4022730752ul;
! r ^= (r >> 18);
! return r;
}

Mersene twister number generator (Matsumoto & Nishimura 2002)



“For every randomized algorithm, 
there is a clever deterministic one.”

Harald Niederreiter, 1998
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LOW-DISCREPANCY POINTS
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dis•crep•an•cy (noun)
A lack of compatibility or similarity 
between two or more facts
ORIGIN early 17th cent.: from Latin discrepantia, 
from discrepare ‘be discordant,’ from dis- ‘apart, 
away’ + crepare ‘to creak.’
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dis•crep•an•cy (noun)
A lack of compatibility or similarity 
between two or more facts
ORIGIN early 17th cent.: from Latin discrepantia, 
from discrepare ‘be discordant,’ from dis- ‘apart, 
away’ + crepare ‘to creak.’
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dis•crep•an•cy (noun)
A lack of compatibility or similarity 
between two or more facts points
ORIGIN early 17th cent.: from Latin discrepantia, 
from discrepare ‘be discordant,’ from dis- ‘apart, 
away’ + crepare ‘to creak.’
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DISCREPANCY CRITERIA

Number Theory
Box discrepancy, local discrepancy, star discrepancy, 
half-plane discrepancy, edge discrepancy, strip 
discrepancy, ...

Computer Graphics
Stratified samples, jittering, n-rooks, halftoning, Blue 
noise spectrum, Poisson disk sampling, minimum 
maximum distance, ... 
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BOX DISCREPANCY
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Halton sequence (100 points)Random (100 points)



BOX DISCREPANCY
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Halton sequence (100 points)Random (100 points)



BOX DISCREPANCY
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Halton sequence (100 points)Random (100 points)

19 points,
25% area

26 points,
25% area



BOX DISCREPANCY
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Halton sequence (100 points)Random (100 points)

19 points,
25% area

26 points,
25% area

D = |19/100 - 0.25| 
= 0.06

D = |26/100 - 0.25| 
= 0.01



BOX DISCREPANCY
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Halton sequence (100 points)Random (100 points)

19 points,
25% area

26 points,
25% areaD = |14/100 - 0.10| 

= 0.04
D = |11/100 - 0.10| 

= 0.01

D = |19/100 - 0.25| 
= 0.06

D = |26/100 - 0.25| 
= 0.01

14 points, 10% area 11 points, 10% area



STAR DISCREPANCY
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The discrepancy of the point set S = {x1, .., xN} relative

to a collection A of axis-aligned boxes in [0, 1)

d
is

D

⇤
(S;A) = sup

a2A

����
# {xi 2 a}

N

� vol(a)

����



IN ONE DIMENSION
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VAN DER CORPUT SEQ.
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van der Corput sequence

12 34 5



VAN DER CORPUT SEQ.
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van der Corput sequence

van der Corput sequence

FUNCTION Halton(index)

  result = 0

  f = 1 / 2

  i = index

  WHILE(i > 0) 

    result += f * (i % 2)

    i = floor(i / 2)

    f = f / 2;

  END

  RETURN result

END

// Implementation with bitwise operations, Kollig & Keller 2002

double RI_vdC(uint bits, uint s = 0) {

    bits = (bits << 16) | (bits >> 16);

    bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);

    bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);

    bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);

    bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);

  

    // facultative scrambling for randomization

    bits ^= s;

    // final normalization in the range [0,1)

    return (double) bits / (double) 0x100000000LL;

}

H2(i) = =

4 2 1 5 3

van der Corput sequence
12 34 5



GOLDEN RATIO SEQ.
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Golden ratio sequence

12 345

van der Corput sequence

12 34 5



GOLDEN RATIO SEQ.
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Golden ratio sequence

Golden ratio sequences

90

Gs(i) = {s + i · �}, ⇥ i � 1

{x} = x� ⇥x⇤

� =
1 +

⇥
5

2
� 1.618034 . . .

5 2 4 1 3

Golden ratio sequence

12 345



GOLDEN RATIO SEQ.
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Golden ratio sequence

Golden ratio sequences

91

{x} = x� ⇥x⇤

Gs(i) = {s + i · �}, ⇥ i � 1

� =
1
⇥

= ⇥� 1 =
⇤

5� 1
2

⇥ 0.618034 . . .

5 2 4 1 3

Golden ratio sequence

12 345



IN TWO DIMENSIONS
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HAMMERSLEY AND HALTON
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Hammersley set

⇢✓
i

N
,H2 (i)

◆�N

i=1

Halton sequence

(H2 (i) , H3 (i)) , 8 i � 1



GOLDEN LATTICE RULE
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Golden sequenceGolden lattice

⇢✓
i

N
,Gs (i)

◆�N

i=1

?

(Gs (i) , ?) , 8 i � 1
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x

y

origin

pole L

polar angle
radiusvertical coordinate

Polar coordinate systemCartesian coordinate system

horizontal coordinate

unit length

unit length

CARTESIAN/POLAR SYSTEMS

(2xPi)

(area = 1)

(area = Pi)



HALTON SEQUENCE
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Polar coordinatesCartesian coordinates



HAMMERSLEY SET
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Polar coordinatesCartesian coordinates



GOLDEN LATTICE
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Polar coordinatesCartesian coordinates



PHYLLOTAXIS INSPIRATIONS
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Flower seedsStrawberry seeds



COMPUTER RENDERING
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RAY-TRACING IN 3D SCENES
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RENDERING EQUATION
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Lw (x,w) =

Z

⌦
Li (w

0
) V (x,w

0
) �r (w,w

0
) cos (w,w

0
) dw

0

⌦
w

w0



QUASI-RANDOM SAMPLING
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Random Hammersley set Golden latticeHalton sequence

Figure from Schretter, Dehaye and Kobbelt, 2012



AMBIENT OCCLUSION
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Random (64 spp)Random (16 spp)



AMBIENT OCCLUSION
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Golden lattice (64 spp)Golden lattice (16 spp)



HDR LIGHT PROBE
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Pisa light probe, courtesy of Paul Debevec



IMAGE-BASED LIGHTING
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Golden lattice (256 spp)Golden lattice (64 spp)



NON-UNIFORM SAMPLING
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PROBABILITY DENSITY
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Piecewise-linear ramp gradient



WARPED POINT SET
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Warped Hammersley set (256 points)



WARPED POINT SET
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Warped golden lattice (256 points)



PROBABILITY DENSITY
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Mixture of two multivariate Gaussians



WARPED POINT SET
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Warped Hammersley set (256 points)



WARPED POINT SET
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Warped golden lattice (256 points)



HDR LIGHT PROBE
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Pisa light probe, courtesy of Paul Debevec



WARPED POINT SET

86

Warped Hammersley set (256 points)



WARPED POINT SET
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Warped golden lattice (256 points)



PROBLEM STATEMENT
Problem: Generate a sequence of low-discrepancy 
points from a given probability density function (PDF) 
represented as a discrete grayscale intensity image.
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PROBLEM AND EXPERIMENT
• Problem: generate a sequence of low-discrepancy 

points from the a given discrete probability density 
function (DPDF) represented as a grayscale image.

2

Input: density image Output: sequence of low-
discrepancy points

Output: point sequenceInput: density image



THE INVERSION METHOD
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THE INVERSION METHOD

908-6 

Intuition Behind Inverse-Transform Method 
 (Weibull (α = 1.5, β = 6) example) 

 

Illustration from D. Kelton, 2002

Given the cumulative density 
function F from the probability 
density function (PDF) f

1. Generate a uniform random 
number u in the interval [0,1)

2. With numerical integration, 
compute x such that F(x) = u

3. Take x to be a non-uniform 
random number drawn from f



THE INVERSION METHOD
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Illustration from D. Kelton, 2002

8-7 

The algorithm in action: 

 

Given the cumulative density 
function F from the probability 
density function (PDF) f

1. Generate a uniform random 
number u in the interval [0,1)

2. With numerical integration, 
compute x such that F(x) = u

3. Take x to be a non-uniform 
random number drawn from f



2D INVERSION METHODS
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A- DUAL STEPS METHOD

Generate a low-discrepancy 2D point sequence,   
e.g. the Halton sequence.

Then, transform the first coordinate with a marginal 
distribution function and the inversion method.

Then, transform the second coordinate with the 
corresponding conditional distribution function.

(Devroye, p. 96, 1986)
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B- SINGLE STEP METHOD

Generate a suitable low-discrepancy 1D sequence, 
e.g. the Golden ratio sequence.

Then, transform the 1D coordinate along a suitable 
unfolded image, with the inversion method.

Then, map the coordinate to a higher-dimensional 
point with the inverse Hilbert space filling curve.

(Schretter and Niederreiter, 2012)
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SPACE FILLING CURVE

The position of the hollow point corresponds to the 
middle position along the path of the Hilbert SFC.

Arbitrary spatial precision can be reached with a 
sufficient order of recursion (order 24 for IEEE floats).
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2nd order Hilbert SFC 3rd order Hilbert SFC1st order Hilbert SFC





A - DUAL WARP METHOD

5

Halton sequence

Density image 1D marginal (y) and 
conditional (x) PDFs

1D marginal (x) and 
conditional (y) PDFs

A- DUAL STEPS METHOD

97



B - SINGLE WARP METHOD

6

Uniform 1D low-
discrepancy sequence

Density image 1D cumulated 
density function

This is a 1D array 
shown in multiple lines

The input 2D image is 
traversed along a Hilbert 

space filling curve
(from dark to bright)

Warped 1D low-
discrepancy sequence

B- SINGLE STEP METHOD
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INVERSION RESULTS
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Single inversion, 65536 pointsDual inversion, 65536 points



INVERSION RESULTS
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Single inversion, 65536 pointsDual inversion, 65536 points



INVERSION RESULTS
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Single inversion, 65536 pointsDual inversion, 65536 points

Artifacts: Sudden variations among conditional 
density functions profiles result in visible 
structures (artifacts) after dual steps inversion.



UNIFORM DENSITY
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Golden sequence + Hilbert mappingHalton sequence



UNIFORM DENSITY
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Golden sequence + Hilbert mappingHalton sequence

No structures and 
similar stratification?

Correlations yield 
structures in Halton!



RDF Power Spectrum

Gbl. Mindist   0.25539
Avg. Mindist   0.57096
Eff. Nyquist   0.22502
Oscillations   0.93326

Halton sequence



RDF Power Spectrum

Gbl. Mindist   0.05219
Avg. Mindist   0.55083
Eff. Nyquist   0.22002
Oscillations   0.44923

Golden sequence
+ Hilbert mapping



RDF Power Spectrum

Gbl. Mindist   0.01838
Avg. Mindist   0.46482
Eff. Nyquist   0.00000
Oscillations   0.22947

Random sequence



THE FINAL WORDS
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CONCLUSION

108

Quasi-randomRandom



SUGGESTED BOOKS
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THANK YOU
FOR NOT USING random()

Colas Schretter colas.schretter@gmail.com
http://homepages.ulb.ac.be/~cschrett/
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