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INTRODUCTION

Non-singular conic of the projective plane PG(2, q)

over the finite field GF(q) consists of q + 1

points no three of which are collinear.

Do these properties characterize non-singular

conics?

For q odd, affirmatively answered by B. Segre

(1954).

Generalization 1 (Segre):

Sets of k points in PG(2, q), k ≥ 3, no three

of which are collinear, and sets of k points in

PG(n, q), k ≥ n+ 1, no n+ 1 of which lie in a

hyperplane; the latter are k-arcs.

Relation between k-arcs, algebraic curves and

hypersurfaces. Also, arcs and linear MDS codes

of dimension at least 3 are equivalent ⇒ new

results about codes.



Generalization 2 (Segre) :

k-cap of PG(n, q), n ≥ 3, is a set of k points no

three of which are collinear.

Elliptic quadric of PG(3, q) is a cap of size

q2 + 1.

For q odd, the converse is true (Barlotti and

Panella, 1955).

Also, q2 + 1 is the maximum size of a k-cap in

PG(3, q), q 6= 2.

An ovoid of PG(3, q) is a cap of size q2 + 1 for

q 6= 2; for q = 2 an ovoid is cap of size 5 with

no 4 points in a plane.

Ovoids of particular interest discovered by

J. Tits (1962).

Ovoids ⇒ circle geometries, projective planes,

designs, generalized polygons, finite simple groups.



1. k-Arcs

1.1 Definitions

A k-arc in PG(n, q) is a set K of k points, with
k ≥ n+ 1 ≥ 3, such that no n+ 1 of its points
lie in a hyperplane.
An arc K is complete if it is not properly con-
tained in a larger arc. Otherwise, if K ∪ {P} is
an arc for some point P of PG(n, q), the point
P extends K.

A normal rational curve (NRC) of PG(n, q),
n ≥ 2, is any set of points in PG(n, q) which is
projectively equivalent to

{(tn, tn−1, · · · , t,1)|t ∈ GF(q)}∪{(1,0, · · · ,0,0)}.

A NRC contains q + 1 points. A NRC is a
(q + 1)-arc.
n = 2 ⇒ non-singular conic
n = 3 ⇒ twisted cubic
Any (n + 3)-arc of PG(n, q) is contained in a
unique NRC.



1.2 k-Arcs and linear MDS codes

C : m-dimensional linear code over GF(q) of
length k.

If minimum distance d(C) of C is k−m+ 1⇒
C is maximum distance separable code (MDS
code).

For m ≥ 3, linear MDS codes and arcs are
equivalent objects.

C: m-dimensional subspace of vector space
V (k, q).
G: m× k generator matrix for C.
Then C is MDS if and only if any m columns
of G are linearly independent.
Consider the columns of G as points P1, P2, · · · , Pk
of PG(m − 1, q). So C is MDS if and only if
{P1, P2, · · · , Pk} is a k-arc of PG(m− 1, q).
This gives the relation between linear MDS
codes and arcs.



1.3 The three problems of Segre

I. For given n and q, what is the maximum

value of k such that a k-arc exists in PG(n, q)?

II. For what values of n and q, with q > n+ 1,

is every (q + 1)-arc of PG(n, q) a NRC?

III. For given n and q with q > n + 1, what

are the values of k such that each k-arc

of PG(n, q) is contained in a (q + 1)-arc of

PG(n, q)?

Many partial solutions.

Many results obtained by relating k-arcs to al-

gebraic hypersurfaces (Segre, Bruen, Blokhuis,

Thas)



1.4 k-Arcs in PG(2, q)

Theorem

Let K be a k-arc of PG(2, q). Then

(i) k ≤ q + 2;

(ii) for q odd, k ≤ q + 1;

(iii) any non-singular conic of PG(2, q) is a

(q + 1)-arc;

(iv) each (q+1)-arc of PG(2, q), q even, extends

to a (q + 2)-arc.

(q+1)-arcs of PG(2, q) are called ovals; (q+2)-

arcs of PG(2, q), q even, are called complete

ovals or hyperovals.



Theorem (Segre)

In PG(2, q), q odd, every oval is a non-singular

conic.

Remark

For q even many ovals are known which are

not conics.



Theorem (Segre, Thas)

(i) for q even, every k-arc K with

k > q −√q + 1

extends to a hyperoval.

(ii) for q odd, every k-arc K with

k > q −
1

4

√
q +

25

16
extends to a conic.

Remarks

For many particular values of q the bounds in

the previous theorem can be improved.

For q a square and q > 4, there exist complete

(q−√q+ 1)-arcs in PG(2, q) (see e.g. Kesten-

band).

In PG(2,9) there exists a complete 8-arc.



1.5 k-Arcs in PG(3, q)

Theorem (Segre, Casse)

(i) For any k-arc of PG(3,q), q odd and q > 3,

we have k ≤ q + 1; any k-arc of PG(3,3)

has at most 5 points.

(ii) For any k-arc of PG(3,q), q even and q > 2,

we have k ≤ q + 1; any k-arc of PG(3,2)

has at most 5 points.

Theorem (Segre, Casse & Glynn)

(i) Any (q + 1)-arc of PG(3, q), q odd, is a

twisted cubic.



(ii) Every (q + 1)-arc of PG(3, q), q = 2h, is

projectively equivalent to

C = {(1, t, te, te+1)|t ∈ GF(q)}∪{(0,0,0,1)},

where e = 2m and (m,h) = 1.



1.6 k-Arcs in PG(4, q) and PG(5, q)

Theorem (Casse, Segre, Casse & Glynn,

Kaneta & Maruta, Glynn)

(i) For any k-arc of PG(4, q), q even and q > 4,

k ≤ q+1 holds; any k-arc of either PG(4,2)

or PG(4,4) has at most 6 points.

(ii) For any k-arc of PG(4, q), q odd and q ≥ 5,

k ≤ q + 1 holds; any k-arc of PG(4,3) has

at most 6 points.

(iii) Any (q + 1)-arc of PG(4, q), q even, is a

NRC.

(iv) For any k-arc of PG(5, q), q even and q ≥ 8,

k ≤ q + 1 holds.

(v) In PG(4,9) there exists a 10-arc which is

not a NRC; this is the so-called 10-arc of

Glynn.



1.7 k-Arcs in PG(n, q), n ≥ 3

Theorem (Thas, Kaneta & Maruta)

Let K be a k-arc of PG(n, q), q odd and n ≥ 3.

(i) If

k > q −
1

4

√
q + n−

7

16

then K lies on a unique NRC of PG(n, q).

(ii) If k = q + 1 and q > (4n − 23
4 )2, then K is

a NRC of PG(n, q).

(iii) If q > (4n − 39
4 )2, then k ≤ q + 1 for any

k-arc of PG(n, q).



Theorem (Blokhuis, Bruen, Thas, Storme)

(i) If K is a k-arc of PG(n, q), q even, q 6= 2,
n ≥ 3, with

k > q −
1

2

√
q + n−

3

4
,

then K lies on a unique (q + 1)-arc.

(ii) Any (q + 1)-arc K of PG(n, q), q even and
n ≥ 4, with

q > (2n−
7

2
)2,

is a NRC.

(iii) For any k-arc K of PG(n, q), q even and
n ≥ 4, with

q > (2n−
11

2
)2,

k ≤ q + 1 holds.



1.8 Theorem (Thas)

A k-arc in PG(n, q) exists if and only if a k-arc

in PG(k − n− 2, q) exists.



1.9 Conjecture

(i) For any k-arc K of PG(n, q), q odd

and q > n+ 1, we have k ≤ q + 1.

(ii) For any k-arc K of PG(n, q), q even,

q > n+ 1 and n /∈ {2, q − 2}, we have

k ≤ q + 1.

Remark

For any q even, q ≥ 4, there exists a (q+2)-arc

in PG(q − 2, q).



1.10 Open problems

(a) Classify all ovals and hyperovals of PG(2, q),

q even.

(b) Is every k-arc of PG(2, q), q odd, q > 9 and

k > q −√q + 1 extendable?

(c) Is every 6-arc of PG(3, q), q = 2h,h > 2,

contained in exactly one (q+1)-arc projec-

tively equivalent to

C = {(1, t, te, te+1)|t ∈ GF(q)}∪{(0,0,0,1)},

with e = 2m and (m,h) = 1?



(d) For which values of q does there exist a

complete (q−1)-arc in PG(2, q)? there are

14 open cases.

(e) Is conjecture 1.9 true?

(f) Solve problems I, II and III of Segre.

(g) In PG(n, q), q odd and q ≥ n, are there

(q+1)-arcs other than the 10-arc of Glynn

which are not NRC?

(h) Is a NRC of PG(n, q), q ≥ n + 1, 2 < n <

q − 2, always complete?



(i) Find the size of the second largest com-

plete k-arc in PG(2, q) for q odd and for q

an even non-square.

(j) Find the size of the smallest complete k-arc

in PG(2, q) for all q.



2. k-Caps

2.1 Definitions

In PG(n, q), n ≥ 3, a set K of k points no three

of which are collinear is a k-cap.

A k-cap is complete if it is not contained in a

(k + 1)-cap . A line of PG(n, q) is a secant,

tangent or external line as it meets K in 2,1 or

0 points.

The maximum size of a k-cap in PG(n, q) is

denoted by m2(n, q).

2.2 k-Caps in PG(3, q)

For q 6= 2 m2(3, q) = q2 + 1 (Bose, Qvist);

m2(3,2) = 8. Each elliptic quadric of PG(3, q)

is a (q2 + 1)-cap and any 8-cap of PG(3,2) is

the complement of a plane.



A (q2 + 1)-cap of PG(3, q), q 6= 2, is an ovoid;
the ovoids of PG(3,2) are its elliptic quadrics.

At each point P of an ovoid O of PG(3, q),
there is a unique tangent plane π such that
π ∩O = {P}.
Ovoid O, π is plane which is not tangent plane
⇒ π ∩O is (q + 1)-arc.
q is even ⇒ the (q2 + 1)(q + 1) tangents of O
are the totally isotropic lines of a symplectic
polarity α of PG(3, q), that is, the lines l for
which lα = l.

Theorems (Barlotti & Panella, Brown)

(i) In PG(3, q), q odd, every ovoid is an elliptic
quadric.

(ii) In PG(3, q), q even, every ovoid contain-
ing at least one conic section is an elliptic
quadric.



Theorem (Tits)

W (q) : incidence structure formed by all points

and the totally isotropic lines of a symplectic

polarity α of PG(3, q).

Then W (q) admits a polarity α′ if and only if

q = 22e+1. In that case absolute points of α′

(points lying in their image lines) form an ovoid

O of PG(3, q); O is elliptic quadric if and only

if q = 2.

For q > 2, the ovoids of the foregoing theorem

are called Tits ovoids.

Canonical form of a Tits ovoid :

O = {(1, z, y, x)|z = xy+xσ+2+yσ}∪{(0,1,0,0)},

where σ is the automorphism t 7→ t2
e+1

of GF(q)

with q = 22e+1.



The group of all projectivities of PG(3, q) fixing

the Tits ovoid O is the Suzuki group Sz(q),

which acts doubly transitively on O.

For q even, no other ovoids than the elliptic

quadrics and the Tits ovoids are known.

For q even and q ≤ 32 all ovoids are known

(Barlotti, Fellegara, O’Keefe, Penttila, Royle).

Finally we remark that for q = 8 the Tits ovoid

was first discovered by Segre.



2.3 Ovoids and inversive planes

Definitions

O : ovoid of PG(3, q)

B : set of all intersections π ∩O,

π a non-tangent plane of O.

Then I(O) = (O,B,∈) is a 3− (q2 + 1, q+ 1,1)

design.

A 3 − (n2 + 1, n + 1,1) design I = (P,B,∈) is

an inversive plane of order n and the elements

of B are called circles.

Inversive planes arising from ovoids : egglike.

If the ovoid O is an elliptic quadric, then I(O),

and any inversive plane isomorphic to it, is

called classical or Miquelian.



Fundamental results

By 2.2 (Theorem of Barlotti & Panella) an

egglike inverse plane of odd order is Miquelian.

For odd order, no other inversive planes are

known.

Theorem (Dembowski)

Every inversive plane of even order is egglike.

Let I be an inversive plane of order n. For

any point P of I, the points of I other than

P , together with the circles containing P with

P removed, form a 2 − (n2, n,1) design, that

is, an affine plane of order n. This plane is

denoted IP and is called the internal plane or

derived plane of I at P .

I(O) egglike⇒ IP Desarguesian, that is, AG(2, q).



Theorem (Thas)

Let I be an inversive plane of odd order n. If

for at least one point P of I, the internal plane

IP is Desarguesian, then I is Miquelian.

There is a unique inversive plane of order n,

n ∈ {2,3,4,5,7} (Chen, Denniston, Witt).

For n = 3,5,7 a computer free proof of this

uniqueness is obtained as a corollary of the pre-

ceding theorem.



2.4 Open problems

(a) In PG(3, q), q 6= 2, what is the maximum

size of a complete k-cap with k < q2 + 1?

Partial results are known, e.g. : in PG(3, q),

q odd and q ≥ 67, if K is a complete k-cap

which is not an elliptic quadric, then

k < q2 −
1

4
q3/2 + 2q (Hirschfeld);

in PG(3, q), q even and q ≥ 128, if K is a

complete k-cap which is not an ovoid, then

k ≤ q2 − 2q + 8 (Cao and Ou).

(b) Classify all ovoids of PG(3, q), for q even.

(c) Is every inversive plane of odd order Miquelian?



(d) Determine m2(n, q) for n ≥ 4. Many partial

results are known :

m2(n,2) = 2n,m2(4,3) = 20 (Pellegrino),

m2(5,3) = 56 (Hill), m2(4,4) = 41 (Edel

& Bierbrauer);

several bounds for m2(n, q) are known.


