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INTRODUCTION

Non-singular conic of the projective plane PG(2, q)
over the finite field GF(gq) consists of ¢ + 1
points no three of which are collinear.

Do these properties characterize non-singular
conics?

For q odd, affirmatively answered by B. Segre
(1954).

Generalization 1 (Segre):

Sets of k points in PG(2,q), £ > 3, no three
of which are collinear, and sets of k£ points in
PG(n,q), k>n-+1, non-+ 1 of which liein a
hyperplane; the latter are k-arcs.

Relation between k-arcs, algebraic curves and
hypersurfaces. Also, arcs and linear MDS codes
of dimension at least 3 are equivalent = new

results about codes.



Generalization 2 (Segre) :

k-cap of PG(n,q),n > 3, is a set of k points no
three of which are collinear.

Elliptic quadric of PG(3,q) is a cap of size

g° + 1.

For ¢ odd, the converse is true (Barlotti and
Panella, 1955).

Also, g2+ 1 is the maximum size of a k-cap in
PG(3,q9),q9 # 2.

An ovoid of PG(3,q) is a cap of size g2+ 1 for
q = 2, for ¢ = 2 an ovoid is cap of size 5 with
no 4 points in a plane.

Ovoids of particular interest discovered by

J. Tits (1962).

Ovoids = circle geometries, projective planes,
designs, generalized polygons, finite simple groups.



1. k-Arcs

1.1 Definitions

A k-arc in PG(n,q) is a set K of k points, with
k>n-+12>3, such that no n+ 1 of its points
lie in a hyperplane.

An arc K is complete if it is not properly con-
tained in a larger arc. Otherwise, if K U{P} is
an arc for some point P of PG(n,q), the point
P extends K.

A normal rational curve (NRC) of PG(n,q),
n > 2, is any set of points in PG(n, g) which is
projectively equivalent to

(@™, "1t Dt e GF(¢)YU{(1,0,---,0,0)}.

A NRC contains ¢ + 1 points. A NRC is a
(¢ + 1)-arc.

n = 2 = non-singular conic

n = 3 = twisted cubic

Any (n 4+ 3)-arc of PG(n,q) is contained in a
unique NRC.



1.2 k-Arcs and linear MDS codes

C . m-dimensional linear code over GF(q) of
length k.

If minimum distance d(C) of Cisk—m+1=
C is maximum distance separable code (MDS
code).

For m > 3, linear MDS codes and arcs are
equivalent objects.

C:. m-dimensional subspace of vector space
V(k,q).

G: m X k generator matrix for C.

Then C is MDS if and only if any m columns
of G are linearly independent.

Consider the columns of G as points Py, P, --- , P
of PG(m — 1,q). So C is MDS if and only if
{P1,Pp,---,P,} is a k-arc of PG(m — 1,q).

This gives the relation between linear MDS
codes and arcs.



1.3 The three problems of Segre

I. For given n and g, what is the maximum
value of k such that a k-arc exists in PG(n,q)7

II. For what values of n and q, with ¢ > n+41,
is every (q + 1)-arc of PG(n,q) a NRC?

III. For given n and q with ¢ > n + 1, what
are the values of k such that each k-arc
of PG(n,q) is contained in a (¢ + 1)-arc of
PG(n,q)7?

Many partial solutions.

Many results obtained by relating k-arcs to al-
gebraic hypersurfaces (Segre, Bruen, Blokhuis,
Thas)



1.4 k-Arcs in PG(2,q)

T heorem
Let K be a k-arc of PG(2,q). Then

(i) k<qg+2;

(ii) for g odd, k< gqg+ 1;

(iii) any non-singular conic of PG(2,q) is a
(¢ + 1)-arc;

(iv) each (¢g+1)-arc of PG(2,q), g even, extends
to a (g + 2)-arc.

(¢+1)-arcs of PG(2,q) are called ovals; (¢g+2)-
arcs of PG(2,q), g even, are called complete
ovals or hyperovals.



Theorem (Segre)

In PG(2,q), g odd, every oval is a non-singular
conic.

Remark

For ¢ even many ovals are known which are
not conics.




Theorem (Segre, Thas)

(i) for g even, every k-arc K with

kE>q—+q+1

extends to a hyperoval.

(ii) for g odd, every k-arc K with

1 25
k>q—Z\/§+1—6

extends to a conic.

Remarks

For many particular values of g the bounds in
the previous theorem can be improved.

For g a square and g > 4, there exist complete
(g —+/q+ 1)-arcs in PG(2,q) (see e.g. Kesten-

band).
In PG(2,9) there exists a complete 8-arc.




1.5 k-Arcs in PG(3,q)

Theorem (Segre, Casse)

(i) For any k-arc of PG(3,q), ¢ odd and ¢g > 3,
we have k < g+ 1; any k-arc of PG(3,3)
has at most 5 points.

(ii) For any k-arc of PG(3,q), g even and g > 2,
we have k < g+ 1; any k-arc of PG(3,2)
has at most 5 points.

Theorem (Segre, Casse & Glynn)

(i) Any (¢ + 1)-arc of PG(3,q), ¢ odd, is a
twisted cubic.



(ii) Every (g + 1)-arc of PG(3,q), ¢ = 2", is
projectively equivalent to

C = {(1,t,t°,tT1)|t € GF(q)}U{(0,0,0,1)},

where e = 2™ and (m,h) = 1.



1.6 k-Arcs in PG(4,q) and PG(5,q)

Theorem (Casse, Segre, Casse & Glynn,
Kaneta & Maruta, Glynn)

(i) For any k-arc of PG(4,q), q even and g > 4,
k < g+ 1 holds; any k-arc of either PG(4,2)
or PG(4,4) has at most 6 points.

(ii) For any k-arc of PG(4,q), q odd and g > 5,
k < q—+ 1 holds; any k-arc of PG(4,3) has
at most 6 points.

(iii) Any (g 4 1)-arc of PG(4,q), g even, is a
NRC.

(iv) For any k-arc of PG(5,¢q), g even and g > 8,
k <q-+ 1 holds.

(v) In PG(4,9) there exists a 10-arc which is
not a NRC: this is the so-called 10-arc of
Glynn.



1.7 k-Arcs in PG(n,q),n >3

Theorem (Thas, Kaneta & Maruta)
Let K be a k-arc of PG(n,q), g odd and n > 3.

(i) If

then K lies on a unique NRC of PG(n,q).

(i) If k =g+ 1 and ¢ > (4n — 23)?, then K is
a NRC of PG(n,q).

(i) If ¢ > (4n — 32)2, then k < ¢+ 1 for any
k-arc of PG(n,q).



Theorem (Blokhuis, Bruen, Thas, Storme)

(i) If K is a k-arc of PG(n,q), q even, g # 2,
n > 3, with

1 3

then K lies on a unique (g + 1)-arc.

(ii) Any (¢ + 1)-arc K of PG(n,q), g even and
n > 4, with
2
> (2n — <)<,
q>(2n—7)
iIs a NRC.

(iii) For any k-arc K of PG(n,q), g even and
n > 4, with

11
q > (2’)’L T ?)27

k< q4+ 1 holds.



1.8 Theorem (Thas)

A k-arc in PG(n, q) exists if and only if a k-arc
in PG(k —n — 2,q) exists.



1.9 Conjecture

(i) For any k-arc K of PG(n,q), ¢ odd
and g >n—+ 1, we have k< qg—+ 1.

(ii) For any k-arc K of PG(n,q), g even,
g>n-+1and né&{2,qg— 2}, we have
k<q+1.

Remark

For any g even, g > 4, there exists a (¢+2)-arc
in PG(qg—2,q).



1.10 Open problems

(a) Classify all ovals and hyperovals of PG(2, q),
q even.

(b) Is every k-arc of PG(2,q), q odd, ¢ > 9 and
k> q—.,/q+ 1 extendable?

(c) Is every 6-arc of PG(3,q), q = 2"h > 2,
contained in exactly one (¢4 1)-arc projec-
tively equivalent to

C = {(1,t,t,t°TH|t € GF(¢)}u{(0,0,0,1)},
with e = 2™ and (m,h) = 17



(d) For which values of ¢ does there exist a
complete (¢ —1)-arc in PG(2,q)7 there are
14 open cases.

(e) Is conjecture 1.9 true?

(f) Solve problems I, II and III of Segre.

(9) In PG(n,q), ¢ odd and ¢ > n, are there
(¢4 1)-arcs other than the 10-arc of Glynn
which are not NRC?

(h) Is a NRC of PG(n,q), g >n—+1, 2<n<
q — 2, always complete?



(i) Find the size of the second largest com-
plete k-arc in PG(2,q) for ¢ odd and for g
an even non-square.

(j) Find the size of the smallest complete k-arc
in PG(2,q) for all g.



2. k-Caps

2.1 Definitions

In PG(n,q), n > 3, a set K of k points no three
of which are collinear is a k-cap.

A k-cap is complete if it is not contained in a
(k+ 1)-cap . A line of PG(n,q) is a secant,
tangent or external line as it meets K in 2,1 or
O points.

The maximum size of a k-cap in PG(n,q) is
denoted by mo(n,q).

2.2 k-Caps in PG(3,q)

For ¢ #= 2 mo(3,q9) = ¢° + 1 (Bose, Quist):
m-(3,2) = 8. Each elliptic quadric of PG(3, q)
is a (¢2 4 1)-cap and any 8-cap of PG(3,2) is
the complement of a plane.



A (g2 + 1)-cap of PG(3,q), ¢ # 2, is an ovoid:;
the ovoids of PG(3,2) are its elliptic quadrics.

At each point P of an ovoid O of PG(3,q),
there is a unique tangent plane m such that
TN O ={P}.

Ovoid O, 7 is plane which is not tangent plane
= N0 is (¢ + 1)-arc.

g is even = the (¢2 + 1)(¢ + 1) tangents of O
are the totally isotropic lines of a symplectic
polarity o of PG(3,q), that is, the lines [ for
which ¢ = [.

Theorems (Barlotti & Panella, Brown)

(i) In PG(3,q), g odd, every ovoid is an elliptic
quadric.

(ii) In PG(3,q), g even, every ovoid contain-
ing at least one conic section is an elliptic
quadric.



Theorem (Tits)

W (q) : incidence structure formed by all points
and the totally isotropic lines of a symplectic
polarity a of PG(3,q).

Then W(q) admits a polarity o/ if and only if
g = 22¢t+1 In that case absolute points of o
(points lying in their image lines) form an ovoid
O of PG(3,q); O is elliptic quadric if and only
if ¢ = 2.

For g > 2, the ovoids of the foregoing theorem
are called Tits ovoids.
Canonical form of a Tits ovoid :

O ={(1,zy,z)|z = zy+21T24+y7}U{(0,1,0,0)},

where o is the automorphism t — t2€+1 of GF(q)
with ¢ = 22et1,



The group of all projectivities of PG(3, g) fixing
the Tits ovoid O is the Suzuki group Sz(q),
which acts doubly transitively on O.

For g even, no other ovoids than the elliptic
quadrics and the Tits ovoids are known.

For q even and g < 32 all ovoids are known
(Barlotti, Fellegara, O'Keefe, Penttila, Royle).
Finally we remark that for ¢ = 8 the Tits ovoid
was first discovered by Segre.



2.3 Ovoids and inversive planes

Definitions

O : ovoid of PG(3,q)
B : set of all intersections = N O,
7 a non-tangent plane of O.

Then Z(0) = (0,B,€) isa3—(¢°+1,9+1,1)
design.

A3—(n?4+1,n+1,1) design Z = (P,B,€) is
an inversive plane of order n and the elements
of B are called circles.

Inversive planes arising from ovoids : egglike.

If the ovoid O is an elliptic quadric, then Z(0),
and any inversive plane isomorphic to it, is
called classical or Miquelian.



Fundamental results

By 2.2 (Theorem of Barlotti & Panella) an
egglike inverse plane of odd order is Miquelian.
For odd order, no other inversive planes are
known.

Theorem (Dembowski)
Every inversive plane of even order is egglike.

Let 7 be an inversive plane of order n. For
any point P of Z, the points of Z other than
P, together with the circles containing P with
P removed, form a 2 — (n2,n,1) design, that
is, an affine plane of order n. This plane is
denoted Zp and is called the internal plane or
derived plane of 1 at P.

Z(0) egglike = ITp Desarguesian, thatis, AG(2,q).



Theorem (Thas)

Let Z be an inversive plane of odd order n. If
for at least one point P of Z, the internal plane
Ip is Desarguesian, then Z is Miquelian.

There is a unique inversive plane of order n,
n € {2,3,4,5,7} (Chen, Denniston, Witt).

For n = 3,5,7 a computer free proof of this
uniqueness is obtained as a corollary of the pre-
ceding theorem.



2.4 Open problems

(a) In PG(3,q), ¢ = 2, what is the maximum
size of a complete k-cap with k < g2+ 17
Partial results are known, e.g. : in PG(3,q),
q odd and g > 67, if K is a complete k-cap
which is not an elliptic quadric, then

1
k< q®— Zq3/2 + 2¢ (Hirschfeld);

in PG(3,q), g even and ¢ > 128, if K is a
complete k-cap which is not an ovoid, then
k < q°> —2q+ 8(Cao and Ou).

(b) Classify all ovoids of PG(3,q), for g even.

(c) Is every inversive plane of odd order Miquelian?



(d) Determine mo(n,q) for n > 4. Many partial
results are known
mo(n,2) = 2", m->(4,3) = 20 (Pellegrino),
mo(5,3) = 56 (Hill), m>(4,4) = 41 (Edel
& Bierbrauer);
several bounds for mo(n,q) are known.



